171 research outputs found

    Elastic slow dynamics in polycrystalline metal alloys

    Get PDF
    Elastic slow dynamics, consisting in a reversible softening of materials when an external strain is applied, was experimentally observed in polycrystalline metals and presents analogies with the same phenomenon more widely observed in consolidated granular media. Since the effect is extremely small in metals, precise experimental techniques are needed. Reliable measurement of relative velocity variations of the order of 10−7 is crucial to perform the analysis. In addition, the grain structure and the nature of grain boundaries in metals is very different from that in rocks or concrete. Therefore, linking relaxation elastic effects to the microstructure is needed to understand the physical origin of slow dynamics in metals. Here, interpreting the relaxation phenomenon as a multirelaxation process, we show that it is sensitive to the spatial scale at the microstructural level, up to the point of allowing the identification of the existence of features at different spatial scales, particularly distinguishing damage from microstructural inhomogeneities

    Separation of Damping and Velocity Strain Dependencies using an Ultrasonic Monochromatic Excitation

    Get PDF
    International audiencePrecise knowledge of the dependence of elastic modulus and Q factor on the amplitude of excitation is a prerequisite for the development and validation of models to explain the hysteresis observed in qua-sistatic experiments for various media, i.e., the different deformations at the same applied stress observed when stress change rate is positive or negative. Separation of different contributions to dynamic nonlin-earity (e.g., those due to nonequilibrium effects, often termed conditioning) and independent estimation of nonlinearities originated by the strain dependence of velocity and the damping factor are required, which is often not possible with standard approaches. Here we propose and validate a method that, measuring the response of a sample to a monochromatic excitation at different amplitudes, allows fast, continuous, and quasi-real-time monitoring of the dependence of the material elastic properties on amplitude: dynamic elastic modulus (related with velocity through density) and Q factor of the mechanical resonances (related with wave-amplitude attenuation parameters)

    Robust determination of relaxation times spectra of long-time multirelaxation processes

    Get PDF
    Long-time relaxation processes occur in numerous physical systems. They are often regarded as multirelaxation processes, which are a superposition of exponential decays with a certain distribution of relaxation times. The relaxation times spectra often convey information about the underlying physics. Extracting the spectrum of relaxation times from experimental data is, however, difficult. This is partly due to the mathematical properties of the problem and partly due to experimental limitations. In this paper, we perform the inversion of time-series relaxation data into a relaxation spectrum using the singular value decomposition accompanied by the Akaike information criterion estimator.We show that this approach does not need any apriori information on the spectral shape and that it delivers a solution that consistently approximates the best one achievable for given experimental dataset. On the contrary, we show that the solution obtained imposing an optimal fit of experimental data is often far from reconstructing well the distribution of relaxation times

    Separation of Damping and Velocity Strain Dependencies using an Ultrasonic Monochromatic Excitation

    Get PDF
    Precise knowledge of the dependence of elastic modulus and Q-factor on amplitude of excitation is a prerequisite for the development and validation of models to explain the hysteresis observed in quasi-static experiments for various media, i.e. the different deformations at the same applied stress observed when stress change rate is positive or negative. Separation of different contributions to dynamic nonlinearity (e.g those due to non equilibrium effects, often termed conditioning) and independent estimation of nonlinearities originated by the strain dependence of velocity and damping factor are required, which is often not possible with standard approaches. Here we propose and validate a method which, measuring the response of a sample to a monochromatic excitation at different amplitudes, allows fast, continuous and quasi real-time monitoring of the dependence of the material elastic properties on amplitude: dynamic elastic modulus (related with velocity through density) and Q-factor of the mechanical resonances (related with wave amplitude attenuation parameter

    Continuous waves probing in dynamic acoustoelastic testing

    Get PDF
    Consolidated granular media display a peculiar nonlinear elastic behavior, which is normally analysed with dynamic ultrasonic testing exploiting the dependence on amplitude of different measurable quantities, such as the resonance frequency shift, the amount of harmonics generation, or the break of the superposition principle. However, dynamic testing allows measuring effects which are averaged over one (or more) cycles of the exciting perturbation. Dynamic acoustoelastic testing has been proposed to overcome this limitation and allow the determination of the real amplitude dependence of the modulus of the material. Here, we propose an implementation of the approach, in which the pulse probing waves are substituted by continuous waves. As a result, instead of measuring a time-of-flight as a function of the pump strain, we study the dependence of the resonance frequency on the strain amplitude, allowing to derive the same conclusions but with an easier to implement procedure

    Nonlinear elastic response of thermally damaged consolidated granular media

    Get PDF
    The mechanical properties of consolidated granular media are strongly affected by large temperature changes which induce the development and localization of stresses, leading in turn to damage, e.g., cracking. In this work, we study the evolution of linear and nonlinear elasticity parameters when increasing the temperature of the thermal loading process. We prove the existence of a link between linear and nonlinear elasticity properties. We show that the change of the nonlinear elasticity parameters with the increase in the thermal loading is larger at the lower temperatures than the corresponding change for the linear parameters, suggesting that nonlinear elasticity can be exploited for early thermal damage detection and characterization in consolidated granular media. We finally show the influence of grain size upon the thermal damage evolution with the loading temperature and how this evolution is mirrored by the nonlinear elasticity parameter

    Exploiting Slow Dynamics Effects for Damage Detection in Concrete

    Get PDF
    Nonlinear ultrasonic techniques have been developed over the last decades to detect the presence of damage in materials of interest in the field of civil engineering, such as concrete or mortar. The dependence on the strain amplitude of measurable quantities, such as wave velocity, damping factor, resonance frequency, etc. is normally considered a qualitative indicator of the presence of defects at the microstructural level. The experimental approaches proposed have the advantage of being sensitive to small variations in the sample microstructure and are therefore more adapted to detect the presence of small cracks or damaged areas with respect to traditional linear ultrasonic techniques. However, nonlinear methods are difficult to implement, since they usually require a calibrated experimental set-up which also behaves linearly at high amplitudes of excitation. The slow dynamics features, typical of the hysteresis generated by damage, have been given much less attention as a tool for damage detection even though their quantification is often less demanding in terms of an experimental set-up. Here, we provide the first evidence of how recovery, which is part of the slow dynamics process, is sensitive to the presence of damage in concrete samples and thus could be considered as an easy-to-measure nonlinear indicator for Structural Health Monitoring purposes
    • …
    corecore